
Preprint ANL/MCS-P875{0401, April, 2001Mathematics and Computer Science DivisionArgonne National LaboratoryJe� Linderoth � Stephen WrightDecomposition Algorithms for StochasticProgramming on a Computational GridApril 26, 2001Abstract. We describe algorithms for two-stage stochastic linear programming with recourseand their implementation on a grid computing platform. In particular, we examine serialand asynchronous versions of the L-shaped method and a trust-region method. The parallelplatform of choice is the dynamic, heterogeneous, opportunistic platform provided by theCondor system. The algorithms are of master-worker type (with the workers being used tosolve second-stage problems), and the MW runtime support library (which supports master-worker computations) is key to the implementation. Computational results are presented onlarge sample average approximations of problems from the literature.1. IntroductionConsider the following stochastic optimization problem:minx2S F (x) def= NXi=1 pif(x; !i); (1)where S 2 IRn is a constraint set,
 = f!1; !2; : : : ; !Ng is the set of outcomes(consisting of N distinct scenarios), and pi is the probability associated witheach scenario. Problems of the form (1) can arise directly (in many applications,the number of scenarios is naturally �nite), or as discretizations of problems overcontinuous probability spaces, obtained by approximation or sampling. In thispaper, we discuss the two-stage stochastic linear programming problem with �xedresource, which is a special case of (1) de�ned as follows:min cTx+PNi=1 piq(!i)T y(!i); subject to (2a)Ax = b; x � 0; (2b)Wy(!i) = h(!i)� T (!i)x; y(!i) � 0; i = 1; 2; : : : ; N: (2c)The unknowns in this formulation are x and y(!1); y(!2); : : : ; y(!N), where xcontains the \�rst-stage variables" and each y(!i) contains the \second-stageJe� Linderoth: Axioma Inc., 501-F Johnson Ferry Road, Suite 450, Marietta, GA 30068;jlinderoth@axiomainc.comStephen Wright: Mathematics and Computer Science Division, Argonne National Laboratory,9700 South Cass Avenue, Argonne, IL 60439; wright@mcs.anl.govMathematics Subject Classi�cation (1991): 90C15, 65K05, 68W10

2 Je� Linderoth, Stephen Wrightvariables" associated with the ith scenario. The ith scenario is characterized bythe probability pi and the data objects (q(!i); T (!i); h(!i)).The formulation (2) is sometimes known as the \deterministic equivalent"because it lists the unknowns for all scenarios explicitly and poses the problem asa (potentially very large) structured linear program. An alternative formulationis obtained by recognizing that each term in the second-stage summation in (2a)is a piecewise linear convex function of x. De�ning the ith second-stage problemas a linear program (LP) parametrized by the �rst-stage variables x, that is,Qi(x) def= miny(!i) q(!i)Ty(!i) subject to (3a)Wy(!i) = h(!i) � T (!i)x; y(!i) � 0; (3b)and de�ning the objective in (2a) asQ(x) def= cTx+ NXi=1 piQi(x); (4)we can restate (2) asminx Q(x); subject to Ax = b; x � 0: (5)We note several features about the problem (5). First, it is clear from (4)and (3) that Q(x) can be evaluated for a given x by solving the N linear pro-grams (3) separately. Second, we can derive subgradient information for Qi(x)by considering dual solutions of (3). If we �x x = x̂ in (3), the primal solutiony(!i) and dual solution �(!i) satisfy the following optimality conditions:q(!i)�WT�(!i) � 0 ? y(!i) � 0;Wy(!i) = h(!i)� T (!i)x̂:From these two conditions we obtain thatQi(x̂) = q(!i)T y(!i) = �(!i)TWy(!i) = �(!i)T [h(!i) � T (!i)x̂]: (6)Moreover, since Qi is piecewise linear and convex, we have for any x thatQi(x) �Qi(x̂) � �(!i)T [�T (!i)x+ T (!i)x̂] = ��T (!i)T�(!i)�T (x� x̂); (7)which implies that �T (!i)T�(!i) 2 @Qi(x̂); (8)where @Qi(x̂) denotes the subgradient of Qi at x̂. By Rockafellar [20, Theo-rem 23.8], using polyhedrality of each Qi, we have from (4) that@Q(x̂) = c+ NXi=1 pi@Qi(x̂); (9)for every x̂ that lies in the domain of each Qi, i = 1; 2; : : : ; N .

Stochastic Programming on a Computational Grid 3Let S denote the solution set for (5); we assume for most of the paper thatS is nonempty. Since (5) is a convex program, S is closed and convex, and theprojection operator P (�) onto S is well de�ned. Because the objective functionin (5) is piecewise linear and the constraints are linear, the problem has a weaksharp minimum (Burke and Ferris [7]); that is, there exists �̂ > 0 such thatQ(x)�Q� � �̂kx� P (x)k1; for all x with Ax = b, x � 0, (10)where Q� is the optimal value of the objective.The subgradient information can be used by algorithms in di�erent ways.Successive estimates of the optimal x can be obtained by minimizing over aconvex underestimate of Q(x) constructed from subgradients obtained at earlieriterations, as in the L-shaped method described in Section 2. This method canbe stabilized by the use of a quadratic regularization term (Ruszczy�nski [21],Kiwiel [16]) or by the explicit use of a trust region, as in the `1 trust-regionapproach described in Section 3. Alternatively, when an upper bound on the op-timal value Q� is available, one can derive each new iterate from an approximateanalytic center of an approximate epigraph. The latter approach has been ex-plored by Bahn et al. [1] and applied to a large stochastic programming problemby Frangi�ere, Gondzio, and Vial [8].Because evaluation of Qi(x) and elements of its subdi�erential can be carriedout independently for each i = 1; 2; : : : ; N , and because such evaluations usuallyconstitute the bulk of the computational workload, implementation on parallelcomputers is possible. We can partition second-stage scenarios i = 1; 2; : : : ; Ninto \chunks" and de�ne a computational task to be the solution of all the LPs(3) in a single chunk. Each such task could be assigned to an available workerprocessor. Relationships between the solutions of (3) for di�erent scenarios canbe exploited within each chunk (see Birge and Louveaux [5, Section 5.4]). Thenumber of second-stage LPs in each chunk should be chosen to ensure that thecomputation does not become communication bound. That is, each chunk shouldbe large enough that its processing time signi�cantly exceeds the time requiredto send the data to the worker processor and to return the results.In this paper, we describe implementations of decomposition algorithms forstochastic programming on a dynamic, heterogeneous computational grid madeup of workstations, PCs (from clusters), and supercomputer nodes. Speci�cally,we use the environment provided by the Condor system [17]. We also discussthe MW runtime library (Goux et al. [13,12]), a software layer that signi�cantlysimpli�es the process of implementing parallel algorithms in Condor.For the dimensions of problems and parallel platforms considered in this pa-per, evaluation of the functions Qi(x) and their subgradients at a single x oftenis insu�cient to make e�ective use of the available processors. Moreover, \syn-chronous" algorithms|those that depend for e�ciency on all tasks completingin a timely fashion|run the risk of poor performance in an environment such asours, in which failure or suspension of worker processors while they are process-ing a task is not an infrequent event. We are led therefore to \asynchronous"approaches that consider di�erent points x simultaneously. Asynchronous vari-

4 Je� Linderoth, Stephen Wrightants of the L-shaped and `1 trust-region methods are described in Sections 2.2and 4, respectively.Other parallel algorithms for stochastic programming have been devised byBirge et al. [4], Birge and Qi [6], and Frangi�ere, Gondzio, and Vial [8]. In [4], thefocus is on multistage problems in which the scenario tree is decomposed intosubtrees, which are processed independently and in parallel on worker processors.Dual solutions from each subtree are used to construct a model of the �rst-stage objective (using an L-shaped approach like that described in Section 2),which is periodically solved by a master process to obtain a new candidate�rst-stage solution x. Parallelization of the linear algebra operations in interior-point algorithms is considered in [6], but this approach involves signi�cant datamovement and does not scale particularly well. In [8], the second-stage problems(3) are solved concurrently and inexactly by using an interior-point code. Themaster process maintains an upper bound on the optimal objective, and thisbound along with the subgradients obtained from the second-stage problemsyields a polygon whose (approximate) analytic center is calculated periodicallyto obtain a new candidate x. The approach is based in part on an algorithmdescribed by Gondzio and Vial [11]. The numerical results in [8] report solutionof a two-stage stochastic linear programwith 2:6 million variables and 1:2 millionconstraints in three hours on a cluster of 10 Linux PCs.2. L-Shaped MethodsWe now describe the L-shaped method, a fundamental algorithm for solving (5),and an asynchronous variant.2.1. The Multicut L-Shaped MethodThe L-shaped method of Van Slyke and Wets [25] for solving (5) proceeds by�nding subgradients of partial sums of the terms that make up Q (4), togetherwith linear inequalities that de�ne the domain of Q. The method is essentiallyBenders decomposition [2], enhanced to deal with infeasible iterates. A full de-scription is given in Chapter 5 of Birge and Louveaux [5].We sketch the approachhere and show how it can be implemented in an asynchronous fashion.We suppose that the second-stage scenarios indexed by 1; 2; : : : ; N are parti-tioned into T clusters denoted by N1;N2; : : : ;NT . Let Q[j] represent the partialsum from (4) corresponding to the cluster Nj :Q[j](x) = Xi2Nj piQi(x): (11)The algorithmmaintains a model function mk[j], which is a piecewise linear lowerbound on Q[j] for each j. We de�ne this function at iteration k bymk[j](x) = inff�j j �je � F k[j]x+ fk[j]g; (12)

Stochastic Programming on a Computational Grid 5where F k[j] is a matrix whose rows are subgradients of Q[j] at previous iterates ofthe algorithm, and e = (1; 1; : : : ; 1)T . The rows of �je � F k[j]x+ fk[j] are referredto as optimality cuts. Upon evaluating Q[j] at the new iterate xk by solving (3)for each i 2 Nj , a subgradient gj 2 @Q[j] can be obtained from a formula derivedfrom (8) and (9), namely, gj = �Xi2Nj piT (!i)T�(!i); (13)where each �(!i) is an optimal dual solution of (3). Since by the subgradientproperty we have Q[j](x) � gTj x+ (Q[j](xk) � gTj xk);we can obtain F k+1[j] from F k[j] by appending the row gTj , and fk+1[j] from fk[j] byappending the element (Q[j](xk) � gTj xk). In order to keep the number of cutsreasonable, the cut is not added if mk[j] is not greater than the value predictedby the lower bounding approximation (see (17) below). In this case, the currentset of cuts in F k[j], fk[j] adequately models Q[j]. In addition, we may also wishto delete some rows from F k+1[j] , fk+1[j] corresponding to facets of the epigraph of(12) that we do not expect to be active in later iterations.The algorithm also maintains a collection of feasibility cuts of the formDkx � dk; (14)which have the e�ect of excluding values of x that were found to be infeasible,in the sense that some of the second-stage linear programs (3) are infeasiblefor these values of x. By Farkas's theorem (see Mangasarian [18, p. 31]), if theconstraints (3b) are infeasible, there exists �(!i) with the following properties:WT�(!i) � 0; [h(!i) � T (!i)x]T �(!i) > 0:(In fact, such a �(!i) can be obtained from the dual simplex method for thefeasibility problem (3b).) To exclude this x from further consideration, we simplyadd the inequality [h(!i)�T (!i)x]T�(!i) � 0 to the constraint set, by appendingthe row vector �(!i)TT (!i) to Dk and the element �(!i)Th(!i) to dk in (14).The iterate xk of the multicut L-shaped method is obtained by solving thefollowing approximation to (5):minx mk(x); subject to Dkx � dk; Ax = b; x � 0; (15)where mk(x) def= cTx+ TXj=1mk[j](x): (16)

6 Je� Linderoth, Stephen WrightIn practice, we substitute from (12) to obtain the following linear program:minx;�1;:::;�T cTx+ TXj=1 �j ; subject to (17a)�je � F k[j]x+ fk[j]; j = 1; 2; : : : ; T; (17b)Dkx � dk; (17c)Ax = b; x � 0: (17d)The L-shaped method proceeds by solving (17) to generate a new candidate x,then evaluating the partial sums (11) and adding optimality and feasibility cutsas described above. The process is repeated, terminating when the improvementin objective promised by the subproblem (15) becomes small.For simplicity we make the following assumption for the remainder of thepaper.Assumption 1.(i) The problem has complete recourse; that is, the feasible set of (3) is nonemptyfor all i = 1; 2; : : :; N and all x, so that the domain of Q(x) in (4) is IRn.(ii) The solution set S is nonempty.Under this assumption, feasibility cuts of the form (14), (17c) do not appearduring the course of the algorithm. Our algorithms and their analysis can begeneralized to handle situations in which Assumption 1 does not hold, but sinceour development is complex enough already, we postpone discussion of thesegeneralizations to a future report.Using Assumption 1, we can specify the L-shaped algorithm formally as fol-lows:Algorithm LSchoose tolerance �tol;choose starting point x0;de�ne initial model m0 to be a piecewise linear underestimate of Q(x)such that m0(x0) = Q(x0) and m0 is bounded below;Qmin Q(x0);for k = 0; 1; 2; : : :obtain xk+1 by solving (15);if Qmin �mk(xk+1) � �tol(1 + jQminj)STOP;evaluate function and subgradient information at xk+1;Qmin min(Qmin;Q(xk+1));obtain mk+1 by adding optimality cuts to mk;end(for).

Stochastic Programming on a Computational Grid 72.2. An Asynchronous Parallel Variant of the L-Shaped MethodThe L-shaped approach lends itself naturally to implementation in a master-worker framework. The problem (17) is solved by the master process, whilesolution of each cluster Nj of second-stage problems, and generation of the as-sociated cuts, can be carried out by the worker processes running in parallel.This approach can be adapted for an asynchronous, unreliable environment inwhich the results from some second-stage clusters are not returned in a timelyfashion. Rather than having all the worker processors sit idle while waiting forthe tardy results, we can proceed without them, re-solving the master by usingthe additional cuts that were generated by the other second-stage clusters.We denote the model function simply by m for the asynchronous algorithm,rather than appending a subscript. Whenever the time comes to generate a newiterate, the current model is used. In practice, we would expect the algorithmto give di�erent results each time it is executed, because of the unpredictablespeed and order in which the functions are evaluated and subgradients generated.Because of Assumption 1, we can write the subproblemminx m(x); subject to Ax = b; x � 0: (18)Algorithm ALS, the asynchronous variant of the L-shaped method that wedescribe here, is made up of four key operations, three of which execute on themaster processor and one of which runs on the workers. These operations are asfollows:{ partial evaluate. This is the routine for evaluatingQ[j](x) de�ned by (11)for a given x and j, in the process generating a subgradient gj of Q[j](x). Itruns on a worker processor and returns its results to the master by activatingthe routine act on completed task on the master processor.{ evaluate. This routine, which runs on the master, simply places T tasks ofthe type partial evaluate for a given x into the task pool for distributionto the worker processors as they become available. The completion of theseT tasks is equivalent to evaluating Q(x).{ initialize. This routine runs on the master processor and performs initialbookkeeping, culminating in a call to evaluate for the initial point x0.{ act on completed task. This routine, which runs on the master, is activatedwhenever the results become available from a partial evaluate task. Itupdates the model and increments a counter to keep track of the number ofclusters that have been evaluated at each candidate point. When appropriate,it solves the master problem with the latest model to obtain a new candidateiterate and will call evaluate.In our implementation of both this algorithm and its more sophisticatedcousin Algorithm ATR of Section 4, we may de�ne a single task to consist of theevaluation of more than one cluster Nj. We may bundle, say, 5 or 10 clustersinto a single task, in the interests of making the task large enough to justify themaster's e�ort in packing its data and unpacking its results, and to maintain

8 Je� Linderoth, Stephen Wrightthe ratio of compute time to communication cost at a high level. For purposesof simplicity, however, we assume in the descriptions both of this algorithm andof ATR that each task consists of a single cluster.The implementation depends on a \synchronicity" parameter � which is theproportion of clusters that must be evaluated at a point to trigger the generationof a new candidate iterate. Typical values of � are in the range 0:25 to 0:9.A logical variable specevalk keeps track of whether xk has yet triggered anew candidate. Initially, specevalk is set to false, then set to true when theproportion of evaluated clusters passes the threshold �.We now specify all the methods making up Algorithm ALS.ALS: partial evaluate(xq; q; j;Q[j](xq); gj)Given xq, index q, and partition number j, evaluate Q[j](xq) from (11)together with a partial subgradient gj from (13);Activate act on completed task(xq; q; j;Q[j](xq); gj) on the master processor.ALS: evaluate(xq; q)for j = 1; 2; : : : ; T (possibly concurrently)partial evaluate(xq; q; j;Q[j](xq); gj);end (for)ALS: initializechoose tolerance �tol;choose starting point x0;choose threshold � 2 (0; 1];Qmin 1;k 0, speceval0 false, t0 0;evaluate(x0; 0).ALS: act on completed task(xq; q; j;Q[j](xq); gj)tq tq + 1;add Q[j](xq) and cut gj to the model m;if tq = TQmin min(Qmin;Q(xq));else if tq � �T and not specevalqspecevalq true;k k + 1;solve current model problem (18) to obtain xk+1;if Qmin �m(xk+1) � �tol(1 + jQminj)STOP;evaluate(xk; k);end (if)

Stochastic Programming on a Computational Grid 9We present results for Algorithm ALS in Section 6. While the algorithm isable to use a large number of worker processors on our opportunistic platform,it su�ers from the usual drawbacks of the L-shaped method, namely, that cuts,once generated, must be retained for the remainder of the computation to ensureconvergence and that large steps are typically taken on early iterations before asu�ciently good model approximation to Q(x) is created, making it impossibleto exploit prior knowledge about the location of the solution.3. A Bundle-Trust-Region MethodTrust-region approaches can be implemented by making only minor modi�ca-tions to implementations of the L-shaped method, and they possesses severalpractical advantages along with stronger convergence properties. The trust-region methods we describe here are related to the regularized decompositionmethod of Ruszczy�nski [21] and the bundle-trust-region approaches of Kiwiel [16]and Hirart-Urruty and Lemar�echal [14, Chapter XV]. The main di�erences arethat we use box-shaped trust regions yielding linear programming subproblems(rather than quadratic programs) and that our methods manipulate the size ofthe trust region directly rather than indirectly via a regularization parameter.When requesting a subgradient of Q at some point x, our algorithms do notrequire particular (e.g., extreme) elements of the subdi�erential to be supplied.Nor do they require the subdi�erential @Q(x) to be representable as a convexcombination of a �nite number of vectors. In this respect, our algorithms contrastwith that of Ruszczy�nski [21], for instance, which exploits the piecewise-linearnature of the objectives Qi in (3). Because of our weaker conditions on thesubgradient information, we cannot prove a �nite termination result of the typepresented in [21, Section 3]. However, these conditions potentially allow ouralgorithms to be extended to a more general class of convex nondi�erentiablefunctions. We hope to explore these generalizations in future work.3.1. A Method Based on `1 Trust RegionsA key di�erence between the trust-region approach of this section and the L-shaped method of the preceding section is that we impose an `1 norm boundon the size of the step. It is implemented by simply adding bound constraints tothe linear programming subproblem (17) as follows:��e � x� xk � �e; (19)where e = (1; 1; : : : ; 1)T , � is the trust-region radius, and xk is the currentiterate. During the kth iteration, it may be necessary to solve several problemswith trust regions of the form (19), with di�erent model functionsm and possiblydi�erent values of�, before a satisfactory new iterate xk+1 is identi�ed. We referto xk and xk+1 as major iterates and the points xk;`, ` = 0; 1; 2; : : : obtained

10 Je� Linderoth, Stephen Wrightby minimizing the current model function subject to the constraints and trust-region bounds of the form (19) as minor iterates. Another key di�erence betweenthe trust-region approach and the L-shaped approach is that a minor iterate xk;`is accepted as the new major iterate xk+1 only if it yields a substantial reductionin the objective function Q over the previous iterate xk, in a sense to be de�nedbelow. A further important di�erence is that one can delete optimality cuts fromthe model functions, between minor and major iterations, without compromisingthe convergence properties of the algorithm.To specify the method, we need to augment the notation established in theprevious section. We de�ne mk;`(x) to be the model function after ` minoriterations have been performed at iteration k, and �k;` > 0 to be the trust-region radius at the same stage. Under Assumption 1, there are no feasibilitycuts, so that the problem to be solved to obtain the minor iteration xk;` is asfollows: minx mk;`(x) subject to Ax = b; x � 0; kx� xkk1 � �k;` (20)(cf. (15)). By expanding this problem in a similar fashion to (17), we obtainminx;�1;:::;�T cTx+ TXj=1 �j ; subject to (21a)�je � F k;`[j] x+ fk;`[j] ; j = 1; 2; : : : ; T; (21b)Ax = b; x � 0; (21c)��k;`e � x� xk � �k;`e: (21d)We assume the initial modelmk;0 at major iteration k to satisfy the followingtwo properties: mk;0(xk) = Q(xk); (22a)mk;0 is a piecewise linear underestimate of Q: (22b)Denoting the solution of the subproblem (21) by xk;`, we accept this pointas the new iterate xk+1 if the decrease in the actual objective Q (see (5)) is atleast some fraction of the decrease predicted by the model function mk;`. Thatis, for some constant � 2 (0; 1=2), the acceptance test isQ(xk;`) � Q(xk)� � �Q(xk)�mk;`(xk;`)� : (23)(A typical value for � is 10�4.)If the test (23) fails to hold, we obtain a new model function mk;`+1 byadding and possibly deleting cuts from mk;`(x). This process aims to re�ne themodel function, so that it eventually generates a new major iteration, whileeconomizing on storage by allowing deletion of subgradients that no longer seemhelpful. Addition and deletion of cuts are implemented by adding and deletingrows from F k;`[j] and fk;`[j] , to obtain F k;`+1[j] and fk;`+1[j] , for j = 1; 2; : : :; T .Given some parameter � 2 [0; 1), we obtain mk;`+1 from mk;` by means ofthe following procedure:

Stochastic Programming on a Computational Grid 11Procedure Model-Update (k; `)for each optimality cutpossible delete true;if the cut was generated at xkpossible delete false;else if the cut is active at the solution of (21)possible delete false;else if the cut was generated at an earlier minor iteration�̀= 0; 1; : : :; `� 1 such thatQ(xk)�mk;`(xk;`) > � hQ(xk)�mk;�̀(xk;�̀)i (24)possible delete false;end (if)if possible deletepossibly delete the cut;end (for each)add optimality cuts obtained from each of the component functionsQ[j] at xk;`.In our implementation, we delete the cut if possible delete is true at the�nal conditional statement and, in addition, the cut has not been active duringthe last 100 solutions of (21). More details are given in Section 6.2.Because we retain all cuts active at xk during the course of major iterationk, the following extension of (22a) holds:mk;`(xk) = Q(xk); ` = 0; 1; 2; : : :: (25)Since we add only subgradient information, the following generalization of (22b)also holds uniformly:mk;` is a piecewise linear underestimate of Q, for ` = 0; 1; 2; : : : : (26)We may also decrease the trust-region radius �k;` between minor iterations(that is, choose �k;`+1 < �k;`) when the test (23) fails to hold. We do so if thematch between model and objective appears to be particularly poor. If Q(xk;`)exceeds Q(xk) by more than an estimate of the quantitymaxkx�xkk1�1 Q(xk) �Q(x); (27)we conclude that the \upside" variation of the function Q deviates too muchfrom its \downside" variation, and we choose the new radius �k;`+1 to bringthese quantities more nearly into line. Our estimate of (27) is simply1min(1;�k;`) �Q(xk) �mk;`(xk;`)� ;that is, an extrapolation of the model reduction on the current trust region toa trust region of radius 1. Our complete strategy for reducing � is therefore asfollows. (The counter is initialized to zero at the start of each major iteration.)

12 Je� Linderoth, Stephen WrightProcedure Reduce-�evaluate � = min(1;�k;`) Q(xk;`)� Q(xk)Q(xk)�mk;`(xk;`) ; (28)if � > 0counter counter+1;if � > 3 or (counter � 3 and � 2 (1; 3])set �k;`+1 = 1min(�; 4)�k;`;reset counter 0;This procedure is related to the technique of Kiwiel [16, p. 109] for increasingthe coe�cient of the quadratic penalty term in his regularized bundle method.If the test (23) is passed, so that we have xk+1 = xk;`, we have a great dealof
exibility in de�ning the new model function mk+1;0. We require only thatthe properties (22) are satis�ed, with k + 1 replacing k. Hence, we are free todelete much of the optimality cut information accumulated at iteration k (andprevious iterates). In practice, of course, it is wise to delete only those cuts thathave been inactive for a substantial number of iterations; otherwise we run therisk that many new function and subgradient evaluations will be required torestore useful model information that was deleted prematurely.If the step to the new major iteration xk+1 shows a particularly close matchbetween the true function Q and the model function mk;` at the last minor iter-ation of iteration k, we consider increasing the trust-region radius. Speci�cally,if Q(xk;`) � Q(xk)� 0:5 �Q(xk)�mk;`(xk;`)� ; kxk � xk;`k1 = �k;`; (29)then we set �k+1;0 = min(�hi; 2�k;`); (30)where �hi is a prespeci�ed upper bound on the radius.Before specifying the algorithm formally, we de�ne the convergence test.Given a parameter �tol > 0, we terminate ifQ(xk)�mk;`(xk;`) � �tol(1 + jQ(xk)j): (31)Algorithm TRchoose � 2 (0; 1=2), maximum trust region �hi, tolerance �tol;choose starting point x0;de�ne initial model m0;0 with the properties (22) (for k = 0);choose �0;0 2 (0;�hi];for k = 0; 1; 2; : : :finishedMinorIteration false;

Stochastic Programming on a Computational Grid 13` 0; counter 0;repeatsolve (20) to obtain xk;`;if (31) is satis�edSTOP with approximate solution xk;evaluate function and subgradient at xk;`;if (23) is satis�edset xk+1 = xk;`;obtain mk+1;0 by possibly deleting cuts from mk;`, butretaining the properties (22) (with k + 1 replacing k);choose �k+1;0 2 [�k;`;�hi] according to (29), (30);finishedMinorIteration true;else obtain mk;`+1 from mk;` via Procedure Model-Update (k; `);obtain �k;`+1 via Procedure Reduce-�;` `+ 1;until finishedMinorIterationend (for)3.2. Analysis of the Trust-Region MethodWe now describe the convergence properties of Algorithm TR. We show that for�tol = 0, the algorithm either terminates at a solution or generates a sequence ofmajor iterates that approaches the solution set S (Theorem 2). When �tol > 0,the algorithm terminates �nitely; that is, it avoids generating in�nite sequenceseither of major or minor iterates (Theorem 3).Given some starting point x0 satisfying the constraints Ax0 = b, x0 � 0,and setting Q0 = Q(x0), we de�ne the following quantities that are useful indescribing and analyzing the algorithm:L(Q0) = fx jAx = b; x � 0;Q(x) � Q0g; (32)L(Q0;�) = fx j kx� yk � �; for some y 2 L(Q0)g; (33)� = supfkgk1 j g 2 @Q(x); for some x 2 L(Q0;�hi)g: (34)Using Assumption 1, we can easily show that � <1.We start by showing that the optimal objective value for (20) cannot decreasefrom one minor iteration to the next.Lemma 1. Suppose that xk;` does not satisfy the acceptance test (23). Then wehave mk;`(xk;`) � mk;`+1(xk;`+1):Proof. In obtainingmk;`+1 frommk;` in Model-Update, we do not allow deletionof cuts that were active at the solution xk;` of (21). Using �F k;`[j] and �fk;`[j] to denote

14 Je� Linderoth, Stephen Wrightthe active rows in F k;`[j] and fk;`[j] , we have that xk;` is also the solution of thefollowing linear program (in which the inactive cuts are not present):minx;�1;:::;�T cTx+ TXj=1 �j ; subject to (35a)�je � �F k;`[j] x+ �fk;`[j] ; j = 1; 2; : : : ; T; (35b)Ax = b; x � 0; (35c)��k;`e � x� xk � �k;`e: (35d)The subproblem to be solved for xk;`+1 di�ers from (35) in two ways. First,additional rows may be added to �F k;`[j] and �fk;`[j] , consisting of function valuesand subgradients obtained at xk;` and also inactive cuts carried over from theprevious (21). Second, the trust-region radius �k;`+1 may be smaller than �k;`.Hence, the feasible region of the problem to be solved for xk;`+1 is a subset ofthe feasible region for (35), so the optimal objective value cannot be smaller.Next we have a result about the amount of reduction in the model functionmk;`.Lemma 2. For all k = 0; 1; 2; : : : and ` = 0; 1; 2; : : :, we have thatmk;`(xk)�mk;`(xk;`) = Q(xk)�mk;`(xk;`)� min��k;`; kxk � P (xk)k1� Q(xk)� Q�kxk � P (xk)k1 (36a)� �̂min��k;`; kxk � P (xk)k1� ; (36b)where �̂ > 0 is de�ned in (10).Proof. The �rst equality follows immediately from (25), while the second in-equality (36b) follows immediately from (36a) and (10). We now prove (36a).Consider the following subproblem in the scalar � :min�2[0;1] mk;` �xk + � [P (xk)� xk]� subject to

� [P (xk) � xk]

1 � �k;`: (37)Denoting the solution of this problem by �k;`, we have by comparison with (20)that mk;`(xk;`) � mk;` �xk + �k;`[P (xk) � xk]� : (38)If � = 1 is feasible in (37), we have from (38) and (26) thatmk;`(xk;`) � mk;` �xk + �k;`[P (xk) � xk]�� mk;` �xk + [P (xk) � xk]� = mk;`(P (xk)) � Q(P (xk)) = Q�:Therefore, when � = 1 is feasible for (37), we have from (25) thatmk;`(xk) �mk;`(xk;`) � Q(xk)�Q�;

Stochastic Programming on a Computational Grid 15so that (36a) holds in this case.When � = 1 is infeasible for (37), consider setting � = �k;`=kxk � P (xk)k1(which is certainly feasible for (37)). We have from (38), the de�nition of �k;`,the fact (26) that mk;` underestimates Q, and convexity of Q thatmk;`(xk;`) � mk;`�xk +�k;` P (xk) � xkkP (xk)� xkk1�� Q�xk +�k;` P (xk)� xkkP (xk)� xkk1�� Q(xk) + �k;`kP (xk)� xkk1 (Q� � Q(xk)):Therefore, using (25), we havemk;`(xk)�mk;`(xk;`) � �k;`kP (xk)� xkk1 [Q(xk)� Q�];verifying (36a) in this case as well.Our next result �nds a lower bound on the trust-region radii �k;`. For pur-poses of this result we de�ne a quantity Ek to measure the closest approach tothe solution set for all iterates up to and including xk, that is,Ek def= min�k=0;1;:::;k kx�k � P (x�k)k1: (39)Note that Ek decreases monotonically with k. We also de�ne �init to be theinitial value of the trust region.Lemma 3. There is a constant �lo > 0 such that for all trust regions �k;` usedin the course of Algorithm TR, we have�k;` � min(�lo; Ek=4):Proof. We prove the result by showing that the value�lo = (1=4)min(1;�init; �̂=�)has the desired property, where �̂ is from (10) and � is from (34).Suppose for contradiction that there are indices k and ` such that�k;` < 14 min�1; �̂� ;�init; Ek� :Since the trust region can be reduced by at most a factor of 4 by ProcedureReduce-�, there must be an earlier trust region radius ��k;�̀ (with �k � k) suchthat ��k;�̀< min�1; �̂� ; Ek� ; (40)

16 Je� Linderoth, Stephen Wrightand � > 1 in (28), that is,Q(x�k;�̀)� Q(x�k) > 1min(1;��k;�̀) �Q(x�k) �m�k;�̀(x�k;�̀)�= 1��k;�̀ �Q(x�k)�m�k;�̀(x�k;�̀)� : (41)By applying Lemma 2, and using (40), we haveQ(x�k)�m�k;�̀(x�k;�̀) � �̂min���k;�̀; kx�k � P (x�k)k1� = �̂��k;�̀ (42)where the last equality follows from kx�k � P (x�k)k1 � E�k � Ek and (40). Bycombining (42) with (41), we have thatQ(x�k;�̀)� Q(x�k) > �̂: (43)By using standard properties of subgradients, we haveQ(x�k;�̀) �Q(x�k) � gT�̀ (x�k;�̀� x�k)� kg�̀k1kx�k � x�k;�̀k1 � kg�̀k1��k;�̀; for all g�̀ 2 @Q(x�k;�̀): (44)By combining this expression with (43), and using (40) again, we obtain thatkg�̀k1 � �̂��k;�̀ > �:However, since x�k;�̀ 2 L(Q0;�hi), we have from (34) that kg�̀k1 � �, giving acontradiction.Finite termination of the inner iterations is proved in the following two re-sults. Recall that the parameters � and � are de�ned in (23) and (24), respec-tively.Lemma 4. Let �tol = 0 in Algorithm TR, and let �� be any constant satisfying0 < �� < 1, �� > �, �� � �. Let `1 be any index such that xk;`1 fails to satisfy thetest (23). Then either the sequence of inner iterations eventually yields a pointxk;`2 satisfying the acceptance test (23), or there is an index `2 > `1 such thatQ(xk) �mk;`2(xk;`2) � �� �Q(xk) �mk;`1(xk;`1)� : (45)Proof. Suppose for contradiction that the none of the minor iterations following`1 satis�es either (23) or the criterion (45); that is,Q(xk) �mk;q(xk;q) > �� �Q(xk) �mk;`1(xk;`1)� ;� � �Q(xk) �mk;`1(xk;`1)� ; for all q > `1: (46)It follows from this bound, together with Lemma 1 and Procedure Model-Update, that none of the cuts generated at minor iterations q � `1 is deleted.

Stochastic Programming on a Computational Grid 17We assume in the remainder of the proof that q and ` are generic minoriteration indices that satisfy q > ` � `1:Because the function and subgradients from minor iterations xk;`, l = l1; l1+1; : : : are retained throughout the major iteration k, we havemk;q(xk;`) = Q(xk;`): (47)By de�nition of the subgradient, we havemk;q(x) �mk;q(xk;`) � gT (x� xk;`); for all g 2 @mk;q(xk;`): (48)Therefore, from (26) and (47), it follows thatQ(x) �Q(xk;`) � gT (x� xk;`); for all g 2 @mk;q(xk;`);so that @mk;q(xk;`) � @Q(xk;`): (49)Since Q(xk) < Q(x0) = Q0, we have from (32) that xk 2 L(Q0). Therefore,from the de�nition (33) and the fact that kxk;` � xkk � �k;` � �hi, we havethat xk;` 2 L(Q0;�hi). It follows from (34) and (49) thatkgk1 � �; for all g 2 @mk;q(xk;`): (50)Since xk;` is rejected by the test (23), we have from (47) and Lemma 1 thatthe following inequalities hold:mk;q(xk;`) = Q(xk;`) � Q(xk)� � �Q(xk)�mk;`(xk;`)�� Q(xk)� � �Q(xk)�mk;`1(xk;`1)� :By rearranging this expression, we obtainQ(xk) �mk;q(xk;`) � � �Q(xk) �mk;`1(xk;`1)� : (51)Consider now all points x satisfyingkx� xk;`k1 � �� � �� �Q(xk)�mk;`1(xk;`1)� def= � > 0: (52)Using this bound together with (48) and (50), we obtainmk;q(xk;`)�mk;q(x) � gT (xk;` � x)� �kxk;` � xk1 � (�� � �) �Q(xk)�mk;`1(xk;`1)� :By combining this bound with (51), we �nd that the following bound is satis�edfor all x in the neighborhood (52):Q(xk)�mk;q(x) = �Q(xk) �mk;q(xk;`)� + �mk;q(xk;`)�mk;q(x)�� �� �Q(xk) �mk;`1(xk;`1)� :

18 Je� Linderoth, Stephen WrightIt follows from this bound, in conjunction with (46), that xk;q (the solution of thetrust-region problem with model function mk;q) cannot lie in the neighborhood(52). Therefore, we have kxk;q � xk;`k1 > �: (53)But since kxk;`�xkk1 � �k � �hi for all ` � `1, it is impossible for an in�nitesequence fxk;`g`�`1 to satisfy (53). We conclude that (45) must hold for some`2 � `1, as claimed.We now show that the minor iteration sequence terminates at a point xk;`satisfying the acceptance test, provided that xk is not a solution.Theorem 1. Suppose that �tol = 0.(i) If xk =2 S, there is an ` � 0 such that xk;` satis�es (23).(ii) If xk 2 S, then either Algorithm TR terminates (and veri�es that xk 2 S),or Q(xk)�mk;`(xk;`) # 0.Proof. Suppose for the moment that the inner iteration sequence is in�nite, thatis, the test (23) always fails. By applying Lemma 4 recursively, with any constant�� satisfying the properties stated in Lemma 4, we can identify a sequence ofindices 0 < `1 < `2 < : : : such thatQ(xk)�mk;`j (xk;`j) � �� �Q(xk) �mk;`j�1 (xk;`j�1)�� ��2 �Q(xk)�mk;`j�2(xk;`j�2)�...� ��j �Q(xk)�mk;0(xk;0)� : (54)When xk =2 S, we have from Lemma 3 that�k;` � min(�lo; Ek=4) def= ��lo > 0; for all ` = 0; 1; 2; : : :;so the right-hand side of (36a) is strictly positive. Hence for j su�ciently large,we have thatQ(xk)�mk;`j (xk;`j) � 0:5min� ��lo; kxk � P (xk)k1� Q(xk)� Q�kxk � P (xk)k1 :But this inequality contradicts (36), proving (i).For the case of xk 2 S, there are two possibilities. If the inner iterationsequence terminates �nitely at some xk;`, we have Q(xk) � mk;`(xk;`) = 0 andindeed thatmk;`(x) � Q(xk) = Q�; for all x with kx� xkk1 � �k;`:Because of (26), we have that Q(x) � Q(xk) for all x in a neighborhood of xk,implying that 0 2 @Q(xk). Therefore, termination under these circumstancesyields a guarantee that xk 2 S. When the algorithm does not terminate, itfollows from (54) that Q(xk)�mk;`(xk;`)! 0. By applying Lemma 1, we verifyour claim (ii) of monotonic convergence.

Stochastic Programming on a Computational Grid 19We now prove convergence of Algorithm TR to S.Theorem 2. Suppose that �tol = 0. The sequence of major iterations fxkg iseither �nite, terminating at some xk 2 S, or is in�nite, with the property thatkxk � P (xk)k1 ! 0.Proof. If the claim does not hold, there are two possibilities. The �rst is thatthe sequence of major iterations terminates �nitely at some xk =2 S. However,Theorem 1 ensures, however, that the minor iteration sequence will terminateat some new major iteration xk+1 under these circumstances, so we can rule outthis possibility. The second possibility is that the sequence fxkg is in�nite butthat there is some � > 0 and an in�nite subsequence of indices fkjgj=1;2;::: suchthat kxkj � P (xkj)k1 � �; j = 0; 1; 2; : : ::Since the sequence fQ(xkj)gj=1;2;::: is in�nite, decreasing, and bounded below,it converges to some value �Q > Q�. Moreover, since the entire sequence fQ(xk)gis monotone decreasing, it follows that Q(xk) > �Q and thereforeQ(xk)� Q� > �Q�Q� > 0; k = 0; 1; 2; : : ::Hence, by boundedness of the subgradients (see (34)), we can identify a constant�� > 0 such that kxk � P (xk)k1 � ��; k = 0; 1; 2; : : ::It follows from (39) that Ek � ��; k = 0; 1; 2; : : :: (55)For each major iteration index k, let `(k) be the minor iteration index thatpasses the acceptance test (23). By combining (23) with Lemma 2, we have thatQ(xk)� Q(xk+1) � ��̂min ��k;`(k); kxk � P (xk)k1� � ��̂min��k;`(k); ��� :Since Q(xk)�Q(xk+1)! 0, we deduce thatlimk!1�k;`(k) = 0: (56)By Lemma 3 and (55), we have�k;`(k) � min(�lo; ��=4) > 0; k = 0; 1; 2; : : : ;which contradicts (56). We conclude that the second possibility (an in�nite se-quence fxkg not converging to S) cannot occur either, so the proof is complete.Finally, we show that the algorithm terminates when �tol > 0.Theorem 3. When �tol > 0, Algorithm TR terminates �nitely.

20 Je� Linderoth, Stephen WrightProof. We show �rst that the algorithm cannot \get stuck" at a particular xk,generating an in�nite sequence of minor iterations at xk without eventuallysatisfying either (31) or the acceptance test (23). We see from the reasoning inthe proof of Theorem 1 together with the monotonicity property of Lemma 1that an in�nite sequence of minor iterations must satisfy thatQ(xk) �mk;`(xk;`) # 0: (57)Since the right-hand side of (31) is bounded below by �tol, the test (31) must besatis�ed for some `. Therefore, the minor iteration sequence cannot be in�nite.Now consider the other possibility of an in�nite sequence of major iterationsfxkgk=1;2;:::. Since we haveQ(xk)�mk;`(xk;`) > �tolfor all k and `, and since the acceptance test (23) is satis�ed at all k, we haveQ(xk)�Q(xk+1) � ��tol > 0; for all k = 0; 1; 2 : : ::But this relation is inconsistent with the fact that fQ(xk)g is bounded below(by Q�), so this possibility can also be ruled out, and the proof is complete.3.3. DiscussionThe algorithm can be modi�ed in various ways without changing its propertiesgreatly. For instance, we could replace the step norm bound in (20) by a scaledbound of the form kS(x� xk)k1 � �k;where S is a diagonal positive de�nite matrix. After this modi�cation, (21) re-mains a linear program. We could also use a 1-norm trust region, at the cost ofintroducing an additional variable vector s of the same dimension as x. Speci�-cally, we enforce the constraint kx�xkk1 � �k by enforcing the following linearconstraints: x� xk � s; xk � x � s; eT s � �k:Once again, we obtain a linear programming subproblem, albeit one that involvesmore variables than (21)If a 2-norm trust region is used, we can show by comparing the optimalityconditions for the respective problems that the solution of the subproblemminx mk;`(x) subject to Ax = b; x � 0; kx� xkk2 � �kis identical to the solution ofminx mk;`(x) + �kx� xkk2 subject to Ax = b; x � 0; (58)for some � � 0. We can transform (58) to a quadratic program in the samefashion as the transformation of (20) to (21). The bundle-trust-region approaches

Stochastic Programming on a Computational Grid 21described in Kiwiel [16], Hirart-Urruty and Lemar�echal [14, Chapter XV], andRuszczy�nski [21,22] also lead to problems of the form (58). These approachesmanipulate the parameter � rather than adjusting the trust-region radius, morein the spirit of the Levenberg-Marquardt method for least-squares problems thanof a true trust-region method. Hence, their analysis di�ers somewhat from thatof the preceding section. Moreover, although quadratic programming solvers thatexploit the special structure of the quadratic term in (58) have been designed andimplemented (see [21]), we believe that the linear programming subproblem (21)is more appealing from a practical point of view. Improvements in the e�ciencyand ease of use of linear programming software have continued to occur at arapid pace, and availability of high-quality software has made it much easier toimplement an e�cient algorithm based on (21) than would have been the caseif the subproblems had the form (58).4. An Asynchronous Bundle-Trust-Region MethodIn this section we present an asynchronous, parallel version of the trust-regionalgorithm of the preceding section and analyze its convergence properties.4.1. Algorithm ATRWe now de�ne a variant of the method of Section 3 that allows the partial sumsQ[j]; j = 1; 2; : : : ; T (11) and their associated cuts to be evaluated simultaneouslyfor di�erent values of x. We generate candidate iterates by solving trust-regionsubproblems centered on an \incumbent" iterate, which (after a startup phase)is the point xI that, roughly speaking, is the best among those visited by thealgorithm whose function value Q(x) is fully known.By performing evaluations of Q at di�erent points concurrently, we relax thestrict synchronicity requirements of Algorithm TR, which requires Q(xk) to beevaluated fully before the next candidate xk+1 is generated. The resulting ap-proach, which we call AlgorithmATR (for \asynchronous TR"), is more suitablefor implementation on computational grids of the type we consider here. Besidesthe obvious increase in parallelism that goes with evaluating several points atonce, there is no longer a risk of the entire computation being help up by the slowevaluation of one of the partial sums Q[j] on a recalcitrant worker. AlgorithmATR has similar theoretical properties to Algorithm TR, since the mechanismsfor accepting a point as the new incumbent, adjusting the size of the trust region,and adding and deleting cuts are all similar to the corresponding mechanisms inAlgorithm TR.Algorithm ATR maintains a \basket" B of at most K points for which thevalue of Q and associated subgradient information is partially known. When theevaluation of Q(xq) is completed for a particular point xq in the basket, it isinstalled as the new incumbent if (i) its objective value is smaller than that ofthe current incumbent xI ; and (ii) it passes a trust-region acceptance test like

22 Je� Linderoth, Stephen Wright(23), with the incumbent at the time xq was generated playing the role of theprevious major iteration in Algorithm TR. Whether xq becomes the incumbentor not, it is removed from the basket.When a vacancy arises in the basket, we may generate a new point by solv-ing a trust-region subproblem similar to (20), centering the trust region at thecurrent incumbent xI . During the startup phase, while the basket is being popu-lated, we wait until the evaluation of some other point in the basket has reacheda certain level of completion (that is, until a proportion � 2 (0; 1] of the par-tial sums (11) and their subgradients have been evaluated) before generating anew point. We use a logical variable specevalq to indicate when the evaluationof xq passes the speci�ed threshold and to ensure that xq does not trigger theevaluation of more than one new iterate. (Both � and specevalq play a similarrole in Algorithm ALS.) After the startup phase is complete (that is, after thebasket has been �lled), vacancies arise only after evaluation of an iterate xq iscompleted.We use m(�) (without subscripts) to denote the model function for Q(�).When generating a new iterate, we use whatever cuts are stored at the time tode�ne m. When solved around the incumbent xI with trust-region radius �, thesubproblem is as follows:trsub(xI;�): minx m(x) subject to Ax = b; x � 0; kx� xIk1 � �: (59)We refer to xI as the parent incumbent of the solution of (59).In the following description, we use k to index the successive points xk thatare explored by the algorithm, I to denote the index of the incumbent, and Bto denote the basket. We use tk to count the number of partial sums Q[j](xk),j = 1; 2; : : : ; T that have been evaluated so far.Given a starting guess x0, we initialize the algorithm by setting the dummypoint x�1 to x0, setting the incumbent index I to �1, and setting the initialincumbent value QI = Q�1 to 1. The iterate at which the �rst evaluation iscompleted becomes the �rst \serious" incumbent.We now outline some other notation used in specifying Algorithm ATR:QI : The objective value of the incumbent xI , except in the case of I = �1, inwhich case Q�1 =1.Iq : The index of the parent incumbent of xq, that is, the incumbent index Iat the time that xq was generated from (59). Hence, QIq = Q(xIq) (exceptwhen Iq = �1; see previous item).�q: The value of the trust-region radius � used when solving for xq.�curr: Current value of the trust-region radius. When it comes time to solve (59)to obtain a new iterate xq, we set �q �curr.mq : The optimal value of the objective functionm in the subproblem trsub(xIq;�q)(59).Our strategy for maintaining the model closely follows that of AlgorithmTR.Whenever the incumbent changes, we have a fairly free hand in deleting the cutsthat de�ne m, just as we do after accepting a new major iterate in AlgorithmTR.

Stochastic Programming on a Computational Grid 23If the incumbent does not change for a long sequence of iterations (correspondingto a long sequence of minor iterations in Algorithm TR), we can still delete\stale" cuts that represent information in m that has likely been superseded (asquanti�ed by a parameter � 2 [0; 1)). The following version of Procedure Model-Update, which applies to Algorithm ATR, takes as an argument the index k ofthe latest iterate generated by the algorithm. It is called after the evaluation ofQ at an earlier iterate xq has just been completed, but xq does not meet theconditions needed to become the new incumbent.Procedure Model-Update (k)for each optimality cut de�ning mpossible delete true;if the cut was generated at the parent incumbent Ik of kpossible delete false;else if the cut was active at the solution xk of trsub(xIk;�k)possible delete false;else if the cut was generated at an earlier iteration �̀such that I�̀= Ik 6= �1 andQIk �mk > �[QIk �m�̀] (60)possible delete false;end (if)if possible deletepossibly delete the cut;end (for each)Our strategy for adjusting the trust region �curr also follows that of Algo-rithm TR. The di�erences arise from the fact that between the time an iteratexq is generated and its function value Q(xq) becomes known, other adjustmentsof �current may have occurred, as the evaluation of intervening iterates is com-pleted. The version of Procedure Reduce-� for Algorithm ATR is as follows.Procedure Reduce-�(q)if Iq = �1return;evaluate � = min(1;�q)Q(xq)� QIqQIq �mq ; (61)if � > 0counter counter+1;if � > 3 or (counter � 3 and � 2 (1; 3])set �+q �q=min(�; 4);set �curr min(�curr;�+q);reset counter 0;return.

24 Je� Linderoth, Stephen WrightThe protocol for increasing the trust region after a successful step is basedon (29), (30). If on completion of evaluation of Q(xq), the iterate xq becomesthe new incumbent, then we test the following condition:Q(xq) � QIq � 0:5(QIq �mq) and kxq � xIqk1 = �q: (62)If this condition is satis�ed, we set�curr max(�curr;min(�hi; 2�q)): (63)The convergence test is also similar to the test (31) used for Algorithm TR.We terminate if, on generation of a new iterate xk, we �nd thatQI �mk � �tol(1 + jQI j): (64)We now specify the four key routines of the Algorithm ATR, which serve asimilar function to the four main routines of Algorithm ALS. As in the earliercase, we assume for simplicity of description that each task consists of evaluationof the function and a subgradient for a single cluster (although in practice we maybundle more than one cluster into a single task). The routine partial evaluateexecutes on worker processors, while the other three routines execute on themaster processor.ATR: partial evaluate(xq; q; j;Q[j](xq); gj)Given xq, index q, and partition number j, evaluate Q[j](xq) from (11)together with a partial subgradient gj from (13);Activate act on completed task(xq; q; j;Q[j](xq); gj) on the master processor.ATR: evaluate(xq; q)for j = 1; 2; : : : ; T (possibly concurrently)partial evaluate(xq; q; j;Q[j](xq); gj);end (for)ATR: initialization(x0)choose � 2 (0; 1=2), trust region upper bound �hi > 0;choose synchronicity parameter � 2 (0; 1];choose maximum basket size K > 0;choose �curr 2 (0;�hi], counter 0; B ;;I �1; x�1 x0; Q�1 1; I0 �1;k 0; speceval0 false; t0 0;evaluate(x0; 0).

Stochastic Programming on a Computational Grid 25ATR: act on completed task(xq; q; j;Q[j](xq); gj))tq tq + 1;add Q[j](xq) and cut gj to the model m;basketFill false; basketUpdate false;if tq = T (* evaluation of Q(xq) is complete *)if Q(xq) < QI and (Iq = �1 or Q(xq) � QIq � �(QIq �mq))(* make xq the new incumbent *)I q; QI Q(xI);possibly increase �curr according to (62) and (63);modify the model function by possibly deleting cuts not arisingfrom the evaluation of Q(xq);else call Model-Update(k);call Reduce-�(q) to update �curr;end (if)B Bnfqg;basketUpdate true;else if tq � �T and jBj < K and not specevalq(* basket-�lling phase: enough partial sums have been evaluated at xqto trigger calculation of a new candidate iterate *)specevalq true; basketFill true;end (if)if basketFill or basketUpdatek k + 1; set �k �curr; set Ik I;solve trsub(xI;�k) to obtain xk;mk m(xk);if (64) holdsSTOP;B B [fkg;specevalk false; tk 0;evaluate(xk; k);end (if)It is not generally true that the �rst K iterates x0; x1; : : : ; xK�1 generated bythe algorithmare all basket-�lling iterates. Often, an evaluation of some iterate iscompleted before the basket has �lled completely, so a \basket-update" iterate isused to generate a replacement for this point. Since each basket-update iteratedoes not change the size of the basket, however, the number of basket-�llingiterates that are generated in the course of the algorithm is exactly K.4.2. Analysis of Algorithm ATRWe now analyze Algorithm ATR, showing that its convergence properties aresimilar to those of Algorithm TR. Throughout, we make the following assump-tion: Every task is completed after a �nite time: (65)

26 Je� Linderoth, Stephen WrightThe analysis follows closely that of Algorithm TR presented in Section 3.2.We state the analogues of all the lemmas and theorems from the earlier section,incorporating the changes and rede�nitions needed to handle Algorithm ATR.Most of the details of the proofs are omitted, however, since they are similar tothose of the earlier results.We start by de�ning the level set within which the points and incumbentsgenerated by ATR lie.Lemma 5. All incumbents xI generated by ATR lie in L(Qmax), whereas allpoints xk considered by the algorithm lie in L(Qmax;�hi), where L(�) and L(�; �)are de�ned by (32) and (33), respectively, and Qmax is de�ned byQmax def= supfQ(x) j kx� x0k � �hig:Proof. Consider �rst what happens in ATR before the �rst function evaluationis complete. Up to this point, all the iterates xk in the basket are generatedin the basket-�lling part and therefore satisfy kxk � x0k � �k � �hi, withQIk = Q�1 =1.When the �rst evaluation is completed (by xk, say), it trivially passes thetest to be accepted as the new incumbent. Hence, the �rst nonin�nite incumbentvalue becomes QI = Q(xk), and by de�nition we haveQI � Qmax. Since all laterincumbents must have objective values smaller than this �rst QI , they all mustlie in the level set L(Qmax), proving our �rst statement.All points xk generated within act on completed task lie within a distance�k � �hi either of x0 or of one of the later incumbents xI . Since all the incum-bents, including x0, lie in L(Qmax), we conclude that the second claim in thetheorem is also true.Analogously with � (34), we de�ne a bound on the subgradients over the setL(Qmax;�hi) as follows:�� = supfkgk1 j g 2 @Q(x); for some x 2 L(Qmax;�hi)g: (66)The next result is analogous to Lemma 1. It shows that for any sequence ofiterates xk for which the parent incumbent xIk is the same, the optimal objectivevalue in trsub(xIk;�k) is monotonically increasing.Lemma 6. Consider any contiguous subsequence of iterates xk, k = k1; k1 +1; : : : ; k2 for which the parent incumbent is identical; that is, Ik1 = Ik1+1 =� � � = Ik2 . Then we have mk1 � mk1+1 � � � � � mk2 :Proof. We select any k = k1; k1+1; : : : ; k2�1 and prove that mk � mk+1. Sincexk and xk+1 have the same parent incumbent (xI, say), no new incumbent hasbeen accepted between the generation of these two iterates, so the wholesale cutdeletion that may occur with the adoption of a new incumbent cannot have oc-curred. There may, however, have been a call to Model-Update(k). The �rst \elseif" clause in Model-Update would have ensured that cuts active at the solution

Stochastic Programming on a Computational Grid 27of trsub(xI;�k) were still present in the model when we solved trsub(xI;�k+1)to obtain xk+1. Moreover, since no new incumbent was accepted, �curr cannothave been increased, and we have �k+1 � �k. We now use the same argumentas in the proof of Lemma 1 to deduce that mk � mk+1.The following result is analogous to Lemma 2. We omit the proof, whichmodulo the change in notation is identical to the earlier result.Lemma 7. For all k = 0; 1; 2; : : : such that Ik 6= �1, we have thatQIk �mk � min��k; kxIk � P (xIk)k1� QIk �Q�kxIk � P (xIk)k1 (67a)� �̂min��k; kxIk � P (xIk)k1� ; (67b)where �̂ > 0 is de�ned in (10).The following analogue of Lemma 3 requires a slight rede�nition of the quan-tity Ek from (39). We now de�ne it to be the closest approach by an incumbentto the solution set, up to and including iteration k; that is,Ek def= min�k=0;1;:::;k;I�k 6=�1kxI�k � P (xI�k)k1: (68)We also omit the proof of the following result, which, allowing for the change ofnotation, is almost identical to that of Lemma 3.Lemma 8. There is a constant �lo > 0 such that for all trust regions �k usedin the course of Algorithm ATR, we have�k � min(�lo; Ek=4):The value of �lo that works in this case is �lo = (1=4)min(1; �̂=��;�hi), where�� comes from (66).There is also an analogue of Lemma 4 that shows that if the incumbent re-mains the same for a number of consecutive iterations, the gap between incum-bent objective value and model function decreases signi�cantly as the iterationsproceed.Lemma 9. Let �tol = 0 in Algorithm ATR, and let �� be any constant satisfying0 < �� < 1, �� > �, �� � �. Choosing any index k1 with Ik1 6= �1, we have eitherthat the incumbent Ik1 = I is eventually replaced by a new incumbent or thatthere is an iteration k2 > k1 such thatQI �mk2 � �� �QI �mk1� : (69)The proof of this result follows closely that of its antecedent Lemma 4. The keyis in the construction of the Model-Update procedure. As long asQI �mk > �[QI �mk1]; for k � k1, where I = Ik1 = Ik; (70)

28 Je� Linderoth, Stephen Wrightnone of the cuts generated during the evaluation of Q(xq) for any q = k1; k1 +1; : : : ; k can be deleted. The proof technique of Lemma 4 can then be used toshow that the successive iterates xk1 ; xk1+1; : : : cannot be too closely spaced ifthe condition (70) is to hold and if all of them fail to satisfy the test to becomea new incumbent. Since they all belong to a box of �nite size centered on xI ,there can be only �nitely many of these iterates. Hence, either a new incumbentis adopted at some iteration k � k1 or condition (69) is eventually satis�ed.We now show that the algorithm cannot \get stuck" at a nonoptimal incum-bent. The following result is analogous to Theorem 1, and its proof relies on theearlier results in exactly the same way.Theorem 4. Suppose that �tol = 0.(i) If xI =2 S, then this incumbent is replaced by a new incumbent after a �nitetime.(ii) If xI 2 S, then either Algorithm ATR terminates (and veri�es that xI 2 S),or QI �mk # 0 as k!1.We conclude with the result that shows convergence of the sequence of in-cumbents to S. Once again, the logic of proof follows that of the synchronousanalogue Theorem 2.Theorem 5. Suppose that �tol = 0. The sequence of incumbents fxIkgk=0;1;2;:::is either �nite, terminating at some xI 2 S or is in�nite with the property thatkxIk � P (xIk)k1 ! 0.5. Implementation on Computational GridsWe now describe some salient properties of the computational environment inwhich we implemented the algorithms, namely, a computational grid runningthe Condor system and the MW runtime support library.5.1. Properties of GridsThe term \grid computing" (synonymously \metacomputing") is generally usedto describe parallel computations on a geographically distributed, heterogeneouscomputing platform.Within this framework there are several variants of the con-cept. The one of interest here is a parallel platform made up of shared worksta-tions, nodes of PC clusters, and supercomputers. Although such platforms arepotentially powerful and inexpensive, they are di�cult to harness for productiveuse, for the following reasons:{ Poor communications properties. Latencies between the processors may behigh, variable, and unpredictable.{ Unreliability. Resources may disappear without notice. A workstation per-forming part of our computation may be reclaimed by its owner and our jobterminated.

Stochastic Programming on a Computational Grid 29{ Dynamic availability. The pool of available processors grows and shrinksduring the computation, according to the claims of other users and schedulingconsiderations at some of the nodes.{ Heterogeneity. Resources may vary in their operational characteristics (mem-ory, swap space, processor speed, operating system).In all these respects, our target platform di�ers from conventional multiprocessorplatforms (such as IBM SP or SGI Origin machines) and from Linux clusters.5.2. CondorOur particular interest is in grid computing platforms based on the Condor sys-tem [17], which manages distributively owned collections (\pools") of processorsof di�erent types, including workstations, nodes from PC clusters, and nodesfrom conventional multiprocessor platforms. When a user submits a job, theCondor system discovers a suitable processor for the job in the pool, transfersthe executable and starts the job on that processor. It traps system calls (suchas input/output operations), referring them back to the submitting workstation,and checkpoints the state of the job periodically. It also migrates the job to adi�erent processor in the pool if the current host becomes unavailable for anyreason (for example, if the workstation is reclaimed by its owner). Condor man-aged processes can communicate through a Condor-enabled version of PVM [10]or by using Condor's I/O trapping to write into and read from a series of shared�les.5.3. Implementation in MWMW (see Goux, Linderoth, and Yoder [13] and Goux et al. [12]) is a runtimesupport library that facilitates implementation of parallel master-worker applica-tions on computational grids. To implement MW on a particular computationalgrid, a grid programmer must reimplement a small number of functions to per-form basic operations for communications between processors and managementof computational resources. These functions are encapsulated in the MWRM-Comm class. Of more relevance to the current paper is the other side of MW,the application programming interface presented to the application programmer.This interface takes the form of a set of three C++ abstract classes that must bereimplemented in a way that describes the particular application. These classes,named MWDriver, MWTask, and MWWorker, contain a total of ten methodsfor which the user must supply implementations. We describe these methodsbrie
y, indicating how they are implemented for the particular case of the ATRand ALS algorithms.MWDriver. This class is made up of methods that execute on the submittingworkstation, which acts as the master processor. It contains the following fourC++ pure virtual functions. (Naturally, other methods can be de�ned as neededto implement parts of the algorithm.)

30 Je� Linderoth, Stephen Wright{ get userinfo: Processes command-line arguments and does basic setup. Inour applications this function reads a command �le to set various parame-ters, including convergence tolerances, number of scenarios, number of partialsums to be evaluated in each task, maximumnumber of worker processors tobe requested, initial trust region radius, and so on. It calls the routines thatread and store the problem data �les, and it reads the initial point, if oneis supplied. It also performs the operations speci�ed in the initializationroutine of Algorithms ALS and ATR, except for the �nal evaluate operation,which is handled by the next function.{ setup initial tasks: De�nes the initial pool of tasks. In the case of Al-gorithms ALS and ATR, this function corresponds to a call to evaluate atx0.{ pack worker init data: Packs the initial data to be sent to each workerprocessor when it joins the pool. In our case, the information contained inthe input �les for the stochastic programming problem is sent to each worker.When the worker subsequently receives a task requiring it to solve a numberof second-stage scenarios, it can use the original input data to generate theparticular data for its assigned set of scenarios. By loading each new workerwith the problem data, we avoid having to subsequently pass a complete setof data for every scenario in every task.{ act on completed task: Is called every time a task �nishes, to process theresults of the task and to take any actions arising from these results. SeeAlgorithms ALS and ATR for our de�nition of this function in our applica-tions.The MWDriver base class performs many other operations associated withhandling worker processes that join and leave the computation, assigning tasksto appropriate workers, rescheduling tasks when their host workers disappearwithout warning, and keeping track of performance data for the run. All thiscomplexity is hidden from the application programmer.MWTask. The MWTask is the abstraction of a single task. It holds both thedata describing that task and the results obtained by executing the task. Theuser must implement four functions for packing and unpacking this data andresults between master and workers into simple data structures that can becommunicated between master and workers using the appropriate primitivesfor the particular computational grid platform on which MW is implemented. Inmost of the results reported in Section 6, the message-passing facilities of Condor-PVM were used to perform the communication. By simply changing compilerdirectives, the same algorithmic code can also be implemented on an alternativecommunication protocol that uses shared �les to pass messages between masterand workers. The large run reported in the next section used this version of thecode.In our applications, each task evaluates the partial sum Q[j](x) and a subgra-dient for a given number of clusters. The task is described by a range of scenarioindices for each cluster in the task and by a value of the �rst-stage variables x.

Stochastic Programming on a Computational Grid 31The results consist of the function and subgradient for each of the clusters inthe task.MWWorker. The MWWorker class is the core of the executable that runs oneach worker. The user must implement two pure virtual functions:{ unpack init data: Unpacks the initial information passed to the worker bythe MWDriver function pack worker init data() when the worker joinsthe pool. (See the discussion of pack worker init data in the MWDriverclass.){ execute task: Executes a single task.After initializing itself, using the information passed to it by the master, theworker process sits in a loop, waiting for tasks to be sent to it. When it detectsa new task, it calls execute task to compute the results. It passes the resultsback to the worker by using the appropriate function from the MWTask class,and then returns to its wait loop. The wait loop terminates when the mastersends a termination message. In our applications, the execute task() functionformulates the second-stage linear programs in its clusters by using the informa-tion in the task de�nition and the data passed to the worker on initialization.It then calls the linear programming solvers SOPLEX or CPLEX to solve theselinear programs, and uses the dual solutions to calculate the subgradient for eachcluster.6. Computational ResultsWe now report on computational experiments obtained with implementationsof the ALS, TR, and ATR algorithms using MW on the Condor system. Afterdescribing some further details of the implementations and the experiments, wediscuss our choices for the various algorithmic parameters and how these werevaried between runs. We then tabulate and discuss the results.6.1. Implementations and ExperimentsAs noted earlier, we used the Condor-PVM implementation of MW for mostof the the runs reported here. Most of the computational time is taken upwith solving linear programming problems, both by the master process (inthe act on completed task function) and in the tasks, which solve clusters ofsecond-stage linear programs. We used the CPLEX simplex solver on the masterprocessor and the SOPLEX public-domain simplex code (see Wunderling [26])on the workers. SOPLEX is somewhat slower in general, but since most of themachines in the Condor pool do not have CPLEX licenses, there was little al-ternative but to use a public-domain code.We ran most of our experiments on the Condor pool at the University ofWisconsin, sometimes using Condor's
ocking mechanism to augment this pool

32 Je� Linderoth, Stephen Wrightwith processors from other sites. The other sites included the University of NewMexico, Columbia University, and the Linux cluster Chiba City at Argonne Na-tional Laboratory. The architectures included PCs running Linux, and PCs andSun workstations running di�erent versions of Solaris. The number of workersavailable for our use varied dramatically between and during each set of trials,because of the di�ering priorities of the two accounts we used, the variation ofour priority during each run, the number and priorities of other users of theCondor pool at the time, and the varying number of machines available to thepool. The latter number tends to be larger during the night, when owners of theindividual workstations are less likely to be using them. The master process wasrun on a Linux machine in some experiments and an Intel Solaris machine inother cases.The input �les for the problems reported here were in SMPS format (see Birgeet al. [3] and Gassmann and Schweitzer [9]). We considered two-stage stochasticlinear programs in which the number of scenarios is �nite but extremely large.We used Monte Carlo sampling to obtain approximate problems with a speci�ednumber N of second-stage scenarios. Brief descriptions of the test problems canbe found at [15]. In each experiment, we supplied a starting point to the code,obtained from the solution of a di�erent sampled instance of the same problem.The function value of the starting point was therefore quite close to the optimalobjective value.6.2. Critical ParametersAs part of the initialization procedure (implemented by the get userinfo func-tion in the MWDriver class), the code reads an input �le in which various param-eters are speci�ed. Several parameters, such as those associated with modifyingthe size of the trust region, have �xed values that we have discussed already inthe text. Others are assigned the same values for all algorithms and all experi-ments, namely,�tol = 10�5; �hi = 103; �0;0 = �0 = 1; � = 10�4:We also set � = 0 in the Model-Update functions in both TR and ATR. In TR,this choice has the e�ect of not allowing deletion of cuts generated during anymajor iterations, until a new major iterate is accepted. In ATR, the e�ect is tonot allow deletion of cuts that are generated at points whose parent incumbentis still the incumbent. Even among cuts for which possible delete is still trueat the �nal conditional statement of the Model-Update procedures, we do notactually delete the cuts until they have been inactive at the solution of thetrust-region subproblem for a speci�ed number of consecutive iterations. For TR,we delete the cut if it has been inactive for more than 100 consecutive minoriterations, while in ATR we delete the cut if it was last active at subproblem `,where ` < k�100 and k is the current iteration index. Our cut deletion strategyis therefore not at all parsimonious; it tends to lead to subproblems (20) and (59)with fairly large numbers of cuts. In most cases, however, the storage required

Stochastic Programming on a Computational Grid 33for these cuts and the time required to solve the subproblems remain reasonable.We discuss the exceptions below.The synchronicity parameter �, which arises in Algorithms ALS and ATRand which speci�es the proportion of clusters from a particular point that mustbe evaluated in order to trigger evaluation of a new candidate solution, is variedbetween :5 and 1:0 in our experiments. The size K of the basket B is variedbetween 1 and 14. For each problem, the number T of clusters is also varied in amanner described in the tables, as is the number of tasks into which the second-stage calculations are divided, which we denote by C. Note that the number ofsecond-stage LPs per chunk is therefore N=C while the number per cluster isN=T .The MW library allows us to specify an upper bound on the number ofworkers we request from the Condor pool, so that we can avoid claiming moreworkers than we can utilize e�ectively. We calculate a rough estimate of thisnumber based on the number of tasks C per evaluation of Q(x) and the basketsize K. For instance, the synchronous TR and LS algorithms can never use morethan C worker processors, since they evaluate Q at just one x at a time. In thecase of TR and ATR, we request mid(25; 200; b(K + 1)C=2c) workers. For ALS,we request mid(25; 200; 2C) workers.We have a single code that implements all four algorithms LS, ALS, TR, andATR, using logical branches within the code to distinguish between the L-shapedand trust-region variants. There is no distinction in the code between the twosynchronous variants and their asynchronous counterparts. Instead, by setting� = 1:0, we force synchronicity by ensuring that the algorithm considers onlyone value of x at a time.Whenever a worker processor joins the computation, MW sends it a bench-mark task that typi�es the type of task it will receive during the run. In ourcase, we de�ne the benchmark task to be the solution of N=C second-stage LPs.The time required for the processor to solve this task is logged, and we set theordering policy so as to ensure that when more than one worker is available toprocess a particular task, the task is sent to the worker that logged the fastesttime on the benchmark task.6.3. Results: Varying Parameter ChoicesIn this section we describe a series of experiments on the same problem, usingdi�erent parameter settings, and run under di�erent conditions on the Condorpool. For these trials, we use the problem SSN, which arises from a networkdesign application described by Sen, Doverspike, and Cosares [23]. This problemis based on a graph with 89 arcs, each representing a telecommunications linkbetween two cities. The �rst-stage variables represent the (nonnegative) extracapacity to be added to each of these 89 arcs to meet an uncertain demandpattern. There is a constraint on the total added capacity. The demands consistof requests for service between pairs of nodes in the graph. For each set ofrequests, a route through the network of su�cient capacity to meet the requests

34 Je� Linderoth, Stephen Wrightmust be found, otherwise a penalty term for each request that cannot be satis�edis added to the objective. The second-stage problems are network
ow problemsfor calculating the routing for a given set of demand
ows. Each such problemis nontrivial: 706 variables, 175 constraints, and 2284 nonzeros in the constraintmatrix. The uncertainty lies in the fact that the demand for service on eachof the 86 pairs is not known exactly. Rather, there are three to seven possiblescenarios for these demands, all independent of each other, giving a total ofabout 1070 possible scenarios. We use Monte Carlo sampling to obtain a sampledapproximation with N = 10; 000 scenarios. The deterministic equivalent for thissampled approximation has approximately 1:75�106 constraints and 7:06�106variables. In all the runs, we used as starting point the computed solution fora di�erent sampled approximation|one with 20; 000 scenarios and a di�erentrandom seed. The starting point had a function value of approximately 9:868860,whereas the optimal objective was approximately 9:832544.In the tables below we list the following information.{ points evaluated. The number of distinct values of the �rst-stage variablesx generated by solving the master subproblem|the problem (18) for Algo-rithm ALS, (20) for Algorithm TR, and (59) for Algorithm ATR.{ jBj. Maximum size of the basket, also denoted above by K.{ number of tasks (chunks). Denoted above by C.{ number of clusters. Denoted above by T , the number of partial sums (11)into which the second-stage problems are divided.{ max processors. The number of workers requested.{ average processors. The average of the number of active (nonsuspended)worker processors available for use by our problem during the run. Becauseof the dynamic nature of the Condor system, the actual number of availableprocessors
uctuates continually during the run.{ parallel e�ciency. The proportion of time for which worker processors werekept busy solving second-stage problems while they were owned by this run.{ maximum number of cuts in the model. The maximum number of(partial) subgradients that are used to de�ne the model function during thecourse of the algorithm.{ masterproblem solve time. The total time spent solving the master sub-problem to generate new candidate iterates during the course of the algo-rithm.{ wall clock. The total time (in minutes) between submission of the job andtermination.Table 1 shows the results of a series of trials of Algorithm ALS with threedi�erent values of � (:5, :7, and :85) and three di�erent choices for the numberof chunks C into which the second-stage solutions were divided (10, 25, and 50).The number of clusters T was �xed at 50, so that up to 50 cuts were generatedat each iteration. For � = :5, the number of values of x for which second-stageevaluations are occurring at any point in time ranged from 2 to 4 during theruns, while for � = :85, there were never more than 2 points being evaluatedsimultaneously.

Stochastic Programming on a Computational Grid 35run points evaluated� # tasks (C)# clusters (T)max. processors allowedav. processorsparallel e�ciencymax. # cuts in modelmasterproblem solve time (min)wall clock time (min)ALS 269 :5 10 50 20 15 .74 5491 26 368ALS 275 :5 25 50 50 21 .90 5536 25 270ALS 293 :5 50 50 100 20 .83 5639 27 329ALS 270 :7 10 50 20 12 .79 5522 27 509ALS 274 :7 25 50 50 25 .73 5550 25 281ALS 282 :7 50 50 100 26 .81 5562 24 254ALS 254 :85 10 50 20 12 .58 5496 22 575ALS 276 :85 25 50 50 19 .57 5575 23 516ALS 278 :85 50 50 100 35 .49 5498 25 260Table 1. SSN, with N = 10;000 scenarios, Algorithm ALS.When these runs were performed, we were not able to obtain anything ap-proaching the requested number 2C of workers from the Condor pool. As generaltrends, we see that the less synchronous variants (with � = :5 and � = :7) tendto be faster than the more synchronous variant (with � = :85), except for the�nal run, during which more processors were available. Moreover, larger valuesof C also tend to produce faster runs. We also note that the number of iter-ations does not depend strongly on �. We would not, of course, expect C toa�ect strongly the number of iterations, but since it a�ects the manner in whichthe second-stage evaluation work is distributed, we would expect it to a�ect therun time. Since the number of workers available to us during this run was lim-ited, however, we did not see the full bene�t of a �ner-grained work distribution(C = 50), though the relatively low parallel e�ciency of the �nal run (� = :85,C = 50) indicates that the bene�ts of more processors may not have been greatin any case.A note on typical task sizes: For C = 10, a typical task required about 50-280seconds on a typical worker machine available to us, while for C = 50, about 9-60seconds were required. The large variation re
ects the wide range in processingability of the machines available in a pool during a typical run. These numbersalso generally hold for the results in Tables 2 and 3.By comparing the results from Table 1 with those reported in Tables 2 and 3,we veri�ed that AlgorithmALS was not as e�cient on this problem as AlgorithmTR and certain variants of Algorithm ATR. One advantage, however, was thatthe asymptotic convergence of ALS was quite fast. Having taken many iterationsto build up a model and return to a neighborhood of the solution after havingstrayed far from it in early iterations, the last three to four iterations home inrapidly from a relatively crude approximate solution (a relative accuracy (Qmin�m(xk+1))=(1+jQminj) of between :0006 and :0026) to a solution of high accuracy.We now turn to Tables 2 and 3, which report on two sets of trials on thesame problem as in Table 1. In these trials we varied the following parameters:

36 Je� Linderoth, Stephen Wrightrun points evaluatedjBj (K)# tasks (C)# clusters (T)max. processors allowedav. processorsparallel e�ciencymax. # cuts in modelmasterproblem solve time (min)wall clock time (min)TR 48 - 10 100 20 19 .21 4284 3 131TR 72 - 10 50 20 19 .26 3520 3 150TR 39 - 25 100 25 22 .49 3126 2 59TR 75 - 25 50 25 23 .48 3519 3 114TR 43 - 50 100 50 42 .52 3860 3 35TR 61 - 50 50 50 44 .53 3011 3 40ATR 109 3 10 100 20 18 .74 7680 9 107ATR 121 3 10 50 20 19 .66 4825 6 111ATR 105 3 25 100 50 37 .73 7367 8 49ATR 113 3 25 50 50 41 .60 4997 6 48ATR 103 3 50 100 100 66 .55 7032 9 29ATR 129 3 50 50 100 66 .59 5183 7 32ATR 167 6 10 100 35 24 .93 7848 13 99ATR 209 6 10 50 35 22 .89 5730 15 92ATR 186 6 25 100 87 49 .77 8220 14 53ATR 172 6 25 50 87 49 .80 5945 7 49ATR 159 6 50 100 175 31 .89 7092 11 65ATR 213 6 50 50 175 40 .88 6299 12 70ATR 260 9 10 100 50 12 .95 14431 35 267ATR 286 9 10 50 50 23 .90 6528 19 160ATR 293 9 25 100 125 17 .93 9911 30 232ATR 377 9 25 50 125 15 .96 7080 24 321ATR 218 9 50 100 200 28 .82 10075 25 101ATR 356 9 50 50 200 23 .93 6132 23 194ATR 378 14 10 100 75 18 .88 15213 77 302ATR 683 14 10 50 75 14 .98 8850 48 648ATR 441 14 25 100 187 22 .89 14597 61 312ATR 480 14 25 50 187 20 .94 8379 36 347ATR 446 14 50 100 200 20 .83 13956 64 331ATR 498 14 50 50 200 22 .94 7892 35 329Table 2. SSN, with N = 10;000 scenarios, �rst trial, Algorithms TR and ATR.{ basket size: K = 1 (synchronous TR) as well as K = 3; 6; 9; 14;{ number of tasks: C = 10; 25; 50, as in Table 1;{ number of clusters: T = 50; 100.The parameter � was �xed at :7 in all these runs.The results in Table 2 were obtained with the master processor running onan Intel Solaris machine, while Table 3 was obtained with a Linux master. Inboth cases, the Condor pool that we tapped for worker processors was identical.Therefore, it is possible to do a meaningful comparison between each line ofTable 3 and its counterpart in Table 2. Conditions on the Condor pool variedbetween and during each trial. This fact, combined with the properties of thealgorithm, resulted in large variability of runtime from one trial to the next, aswe discuss below.

Stochastic Programming on a Computational Grid 37run points evaluatedjBj (K)# tasks (C)# clusters (T)max. processors allowedav. processorsparallel e�ciencymax. # cuts in modelmasterproblem solve time (min)wall clock time (min)TR 47 - 10 100 20 17 .24 3849 4 192TR 67 - 10 50 20 13 .34 3355 3 256TR 47 - 25 100 25 18 .49 3876 4 97TR 57 - 25 50 25 18 .40 2835 3 119TR 42 - 50 100 50 30 .22 3732 3 122TR 65 - 50 50 50 31 .25 3128 4 151ATR 92 3 10 100 20 11 .89 7828 9 125ATR 98 3 10 50 20 11 .84 4893 5 173ATR 86 3 25 100 50 34 .38 6145 5 70ATR 95 3 25 50 50 32 .41 4469 4 77ATR 80 3 50 100 100 52 .23 5411 5 80ATR 131 3 50 50 100 59 .47 4717 6 55ATR 137 6 10 100 35 30 .57 8338 12 84ATR 200 6 10 50 35 26 .60 5211 9 130ATR 119 6 25 100 87 52 .55 7181 7 44ATR 199 6 25 50 87 58 .48 5298 9 81ATR 178 6 50 100 175 50 .47 9776 15 77ATR 240 6 50 50 175 61 .64 5910 11 74ATR 181 9 10 100 50 37 .56 8737 15 96ATR 289 9 10 50 50 19 .93 7491 25 238ATR 212 9 25 100 125 90 .66 11017 21 45ATR 272 9 25 50 125 65 .45 6365 15 105ATR 281 9 50 100 200 51 .72 11216 34 88ATR 299 9 50 50 200 26 .83 7438 27 225ATR 304 14 10 100 75 38 .89 13608 43 129ATR 432 14 10 50 75 42 .95 7844 28 132ATR 356 14 25 100 187 71 .78 13332 48 111ATR 444 14 25 50 187 45 .89 7435 36 163ATR 388 14 50 100 200 42 .79 12302 52 192ATR 626 14 50 50 200 48 .81 7273 46 254Table 3. SSN, with N = 10;000 scenarios, second trial, Algorithms TR and ATR.The nondeterministic nature of the algorithms is evident in doing a side-by-side comparison of the two tables. Even for synchronous TR, the slightly di�erentnumerical values for function and subgradient value returned by di�erent workersin di�erent runs results in slight variations in the iteration sequence and thereforeslight di�erences in the number of iterations. For the asynchronous AlgorithmATR, the nondeterminism is even more marked. During the basket-�lling phaseof the algorithm, computation of a new x is triggered when a certain proportionof tasks from a current value of x has been returned. On di�erent runs, the taskswill be returned in di�erent orders, so the information used by the trust-regionsubproblem (59) in generating the new point will vary from run to run, and theresulting iteration sequences will generally show substantial di�erences.The synchronous TR algorithm is clearly better than the ATR variants withK > 1 in terms of total computation, which is roughly proportional to the

38 Je� Linderoth, Stephen Wrightnumber of iterations. In fact, the total amount of work increases steadily withbasket size. Because of the decreased synchronicity requirements and the greaterparallelism obtained for K > 1, the wall clock times (last columns) do notfollow quite the same trend. The wall clock times for basket sizes K = 3 andK = 6 are at least competitive with the results obtained for the synchronous TRalgorithm. The choice K = 6 gave few of the fastest runs but did yield consistentperformance over all the di�erent choices for the other parameters, and underdi�erent Condor pool conditions.The deleterious e�ects of synchronicity in Algorithm TR can be seen in itspoor performance on several instances, particularly during the second trial. Letus compare, for instance, the entries in the two tables for the variant of TR withC = 50 and T = 100. In the �rst trial, this run used 42 worker processors onaverage and took 35 minutes, while in the second trial it used 30 workers onaverage and required 122 minutes. The di�erence in runtime is too large to beaccounted for by the number of workers. Because this is a synchronous algorithm,the time required for each iteration is determined by the time required for theslowest worker to return the results of its task. In the �rst trial, almost all tasksrequired between 6 and 35 seconds, except for a few iterations that containedtasks that took up to 62 seconds. In the second trial, the slowest worker at eachiteration almost always required more than 60 seconds to complete its task. Wereturn to this point in discussing Table 4 below.Other general observations we can make are that 100 clusters give almostuniformly better results in terms of wall clock time than 50 clusters, althoughthe higher number results in a larger number of cuts in the trust-region sub-problems and an increased amount of time on the master processor in solvingthese problems. The latter factor is critical for K = 9 and K = 14, which donot compare favorably with the smaller values of K on this problem, even ifmany more worker processors are available. For the large basket sizes, the loss ofcontrol induced by the increase in assynchronicity leads to a signi�cantly largernumber of points that are evaluated.In all cases, it takes some time for the modelm to become a good enough ap-proximation to Q that it generates a step that meets the trust-region acceptancecriteria. The six TR runs in Table 3, for instance, required 18, 27, 16, 22, 16, and26 trust-region subproblems to be solved, respectively, before they stepped awayfrom the initial point. (Note that, as expected, the runs with T = 100 requiredfewer such iterations than those with T = 50.) After the �rst step is taken, moststeps are successful; that is, the �rst minor iterate usually is accepted as the nextmajor iterate. Occasionally, two to four minor iterations are required before thenext major iteration is identi�ed. Similar behavior is observed for the runs ofATR, except that successful iterations are more widely spaced. For the �rst runwith K = 6 in Table 3, for instance, the 37th solution of (59) yields the �rstsuccessful step; then 36 of the following 99 solutions of the subproblem yieldsuccessful steps.In Table 4, we took the most promising parameter combinations from Ta-bles 3 and 2 and ran three trials with each combination. The Condor pool condi-tions varied widely during this trial, as can be seen by the way that the average

Stochastic Programming on a Computational Grid 39run points evaluatedjBj (K)# tasks (C)# clusters (T)max. processors allowedav. processorsparallel e�ciencymax. # cuts in modelmasterproblem solve time (min)wall clock time (min)TR 47 - 25 100 25 23 .49 4040 3 58TR 44 - 25 100 25 21 .31 3220 3 97TR 45 - 25 100 25 20 .23 3966 4 158TR 51 - 50 100 50 37 .33 4428 3 48TR 51 - 50 100 50 45 .14 4806 3 135TR 46 - 50 100 50 41 .15 3847 4 135ATR 81 3 25 100 50 43 .38 7451 6 64ATR 81 3 25 100 50 39 .41 6461 5 64ATR 87 3 25 100 50 36 .44 6055 8 66ATR 106 3 50 100 100 84 .28 8222 9 53ATR 95 3 50 100 100 65 .26 6786 7 64ATR 94 3 50 100 100 23 .44 6593 8 105ATR 171 6 25 100 87 70 .45 9173 19 61ATR 135 6 25 100 87 61 .39 7354 12 75ATR 145 6 25 100 87 38 .35 8919 16 146ATR 177 6 50 100 175 87 .41 9263 22 54ATR 162 6 50 100 175 93 .34 7832 18 66ATR 159 6 50 100 175 39 .27 8215 22 199Table 4. SSN �nal trial with best parameter combinations,N = 10;000 scenarios, AlgorithmsTR and ATR.number of workers varies within each group of three runs. For the asynchronousATR runs, the di�erences in wall clock times within each set of three runs usuallycan be explained in terms of the varying number of workers available. (A possibleexception is the last line of the table, the third run of ATR with K = 6, C = 50and T = 100, which took almost four times as long as the �rst run while havingonly slightly fewer than half as many processors. While the speed of machinesavailable was roughly similar between these runs, the third run was plagued withnumerous suspensions as the workers were reclaimed by their owners. Total timethat workers were suspended was over 23,000 seconds on the third run and lessthan 2,800 seconds during the �rst run.) On the other hand, the variability inwall clock time between the six runs of the synchronous TR algorithm was duenot to the number of available workers but rather to the synchronicity e�ectdescribed above. In the run reported in the �rst line of the table, for instance,the slowest worker on any iteration typically took less than 65 seconds. In therun reported on the third line, the time required by the slowest worker variedsigni�cantly but was typically much longer, 150 seconds and more.6.4. Larger InstancesWe also performed runs on several larger instances of SSN (with N = 100; 000scenarios) and on some very large instances of the stormG2 problem, a cargo

40 Je� Linderoth, Stephen Wrightrun points evaluatedjBj (K) # tasks (C)# clusters (T)max. processors allowedav. processorsparallel e�ciencymax. # cuts in modelmasterproblem solve time (min)wall clock time (min)ATR 177 3 100 100 200 38 .52 10558 47 1357Table 5. SSN, with N = 100;000 scenarios.run points evaluatedjBj (K) # tasks (C)# clusters (T)max. processors allowedav. processorsparallel e�ciencymax. # cuts in modelmasterproblem solve time (min)wall clock time (min)TR 17 - 125 125 250 106 .55 2310 0.5 146ATR 25 3 125 125 250 106 .90 3292 0.5 116Table 6. stormG2, with N = 250000 scenarios.
ight scheduling application described by Mulvey and Ruszczy�nski [19]. Ourinterest in this section is more in the sheer size of the problems that can besolved using the algorithms developed for the computational grid than with therelative performance of the algorithms with di�erent parameter settings.Table 5 shows results for a sampled instance of SSN with N = 100; 000scenarios, which is a linear program with approximately 1:75� 107 constraintsand 7:06 � 107 variables. This run was performed at a time when not manymachines were available, and many suspensions occurred during the run. Wechose T = 100 chunks per evaluation and found that most tasks required between41 and 300 seconds on the workers, with a few task times of more than 500seconds. (The benchmarks indicated that the worker speed varied over a factorof 7.) A total of 77 di�erent workers were used during the run, though the averagenumber of nonsuspended workers available at any time was only 39. In fact, atany given point in the computation there were an average of 7 workers assignedto this task that were suspended. Still, a result was obtained in about 22 hours.In the stormG2 problem of Mulvey and Ruszczy�nski [19], the �rst-stage prob-lem contained 121 variables, while each second-stage problem contained 1259variables. We considered �rst a sampled approximation of this problem with250000 scenarios, which resulted in a linear program with 1:32� 108 constraintsand 315 � 108 unknowns. Results are shown in Table 6. The algorithm wasstarted at a solution of a sampled instance with fewer scenarios and was quiteclose to optimal. The objective function at the initial point was approximately15499595:1, compared with an optimal value of 15499591:9 achieved by Algo-rithm TR. In fact, the TR algorithm takes only one major iteration|it accepts

Stochastic Programming on a Computational Grid 41run points evaluatedjBj (K) # tasks (C)# clusters (T)max. processors allowedav. processorsparallel e�ciencymax. # cuts in modelmasterproblem solve time (hr)wall clock time (hr)ATR 28 4 1024 1024 800 433 .668 39647 1.9 31.9Table 7. stormG2, with N = 107 scenarios.the 16th minor iteration as the �rst major iterate x1. The ATR variant doesnot take even one step|it terminates after determining that the initial pointx0 is optimal to within the given convergence tolerance. Although we requested250 processors, an average of only 106 were available during the time that weperformed these two test runs. The second run is able to utilize these to highe�ciency, as the second-stage workload can be divided into a large number ofchunks and very little time is spent in solving the trust-region subproblem.Finally, we report on a very large sampled instance of stormG2 with N = 107scenarios, an instance whose deterministic equivalent is a linear program with9:85�108 constraints and 1:26�1010 variables. Performance is pro�led in Table 7.We used the tighter convergence tolerance �tol = 10�6 for this run. The algo-rithm took successful steps at iterations 28, 34, 37, and 38, the last of these beingthe �nal iteration. The �rst evaluated point had a function value of 15526740,compared with a value of 15498842 at the �nal iteration.For this run, we augmented the Wisconsin Computer Science Condor poolwith machines from Georgia Tech, the University of New Mexico, the ItalianNational Institute of Physics (INFN), the NCSA at the University of Illinois, andthe IEOR Department at Columbia, the Albu, and the Wisconsin engineeringDepartment. Table 8 shows the number and type of processors available at eachof these locations. In contrast to the other runs reported here, we used the\MW-�les" implementation of MW, the variant that uses shared �les to performcommunication between master and workers rather than Condor-PVM.The job ran for a total of almost 32 hours. The number of workers being usedduring the course of the run is shown in Figure 1. The job was stopped afterapproximately 8 hours and was restarted manually from a checkpoint about 2hours later. It then ran for approximately 24 hours to completion. The numberof workers dopped o� signi�cantly on two occasions. The drops were due to themaster processor \blocking" to solve a di�cult master problem and to checkpointthe state of the computation. During this time the worker processors were idle,and MW decided to release a number of the processors rather than have themsit idle.As noted in Table 7, an average of 433 workers were present at any given pointin the run. The computation used a maximum of 556 workers, and there was aratio of 12 in the speed of the slowest and fastest machines, as determined by thebenchmarks. A total of 40837 tasks were generated during the run, representing

42 Je� Linderoth, Stephen WrightNumber Type Location184 Intel/Linux Argonne254 Intel/Linux New Mexico36 Intel/Linux NCSA265 Intel/Linux Wisconsin88 Intel/Solaris Wisconsin239 Sun/Solaris Wisconsin124 Intel/Linux Georgia Tech90 Intel/Solaris Georgia Tech13 Sun/Solaris Georgia Tech9 Intel/Linux Columbia U.10 Sun/Solaris Columbia U.33 Intel/Linux Italy (INFN)1345Table 8. Machines available for stormG2, with N = 107 scenarios.
0

100

200

300

400

500

600

0 20000 40000 60000 80000 100000 120000 140000

#
w

o
rk

e
rs

Sec.Fig. 1. Number of workers used for stormG2, with N = 107 scenarios.3:99�108 second-stage linear programs. (At this rate, an average of 3472 second-stage linear programs were being solved per second during the run.) The averagetime to solve a task was 774 seconds. The total cumulative CPU time spent bythe worker pool was 9014 hours, or just over one year of computation.7. ConclusionsWe have described L-shaped and trust-region algorithms for solving the two-stage stochastic linear programming problem with recourse, and derived asyn-

Stochastic Programming on a Computational Grid 43chronous variants suitable for parallel implementation on distributed heteroge-neous computational grids. We prove convergence results for the trust-regionalgorithms. Implementations based on the MW library and the Condor systemare described, and we report on computational studies using di�erent algorith-mic parameters under di�erent pool conditions. Becasue of the dynamic natureof the computational pool, it is impossible to arrive at a \best" con�gurationor set of algorithmic parameters for all instances. Instead, it may be importantto adjust the algorithm parameters dynamically; we suggest this as a line of fu-ture research. Finally, we report on the solution of some large sampled instancesof problems from the literature, including an instance of the stormG2 problemwhose deterministic equivalent has more than 1010 unknowns. Since the use ofthe computational grid has the greatest bene�t on problems that require largeamounts of computation, the algorithms developed here are best suited to larger(multistage) problems or incorporated into a sample average approximation ap-proach (see Shapiro and Homem-de-Mello [24].AcknowledgmentsThis research was supported by the Mathematics, Information, and Computa-tional Sciences Division subprogram of the O�ce of Advanced Scienti�c Com-puting Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.We also acknowledge the support of the National Science Foundation, underGrant CDA-9726385. We would also like to acknowledge the IHPCL at GeorgiaTech, which is supported by a grant from Intel; the National Computational Sci-ence Alliance under grant number MCA00N015N for providing resources at theUniversity of Wisconsin, the NCSA SGI/CRAY Origin2000, and the Universityof New Mexico/Albuquerque High Performance Computing Center AltaClus-ter; and the Italian Istituto Nazionale di Fisica Nucleare (INFN) and ColumbiaUniversity for allowing us access to their Condor pools.We are grateful to Alexander Shapiro and Sven Ley�er for discussions aboutthe algorithms presented here.References1. O. Bahn, O. du Merle, J.-L. Go�n, and J. P. Vial. A cutting-plane method from analyticcenters for stochasticprogramming.Mathematical Programming, Series B, 69:45{73, 1995.2. J. F. Benders. Partitioning procedures for solving mixed variable programming problems.Numerische Mathematik, 4:238{252, 1962.3. J. R. Birge, M. A. H. Dempster, H. I. Gassmann, E. A. Gunn, and A. J. King. A standardinput format for multiperiod stochastic linear programs. COAL Newsletter, 17:1{19, 1987.4. J. R. Birge, C. J. Donohue, D. F. Holmes, and O. G. Svintsiski. A parallel implemen-tation of the nested decomposition algorithm for multistage stochastic linear programs.Mathematical Programming, 75:327{352, 1996.5. J. R. Birge and R. Louveaux. Introduction to Stochastic Programming. Springer, NewYork, 1997.6. J. R. Birge and L. Qi. Computing block-angular Karmarkar projections with applicationsto stochastic programming. Management Science, 34:1472{1479, 1988.

44 Je� Linderoth, Stephen Wright: Stochastic Programming on a Computational Grid7. J. V. Burke and M. C. Ferris. Weak sharp minima in mathematical programming. SIAMJournal on Control and Optimization, 31:1340{1359, 1993.8. E. Frangi�ere, J. Gondzio, and J.-P. Vial. Building and solving large-scale stochastic pro-grams on an a�ordable distributed computing system. Annals of Operations Research,2000. To appear.9. H. I. Gassmann and E. Schweitzer. A comprehensive input format for stochastic linear pro-grams. Working Paper WP-96-1, School of Business Administration,Dalhousie University,Halifax, Canada, December 1997.10. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam. PVM:Parallel Virtual Machine. The MIT Press, Cambridge, MA, 1994.11. J. Gondzio and J.-P Vial. Warm start and �-subgradients in the cutting plane scheme forblock-angular linear programs. Computational Optimization and Applications, 14:17{36,1999.12. J.-P. Goux, S. Kulkarni, J. T. Linderoth, and M. E. Yoder. An enabling framework formaster-worker applications on the computational grid. In Proceedings of the Ninth IEEESymposium on High Performance Distributed Computing, 2000.13. J.-P. Goux, J. T. Linderoth, and M. E. Yoder. Metacomputing and the master-workerparadigm. Preprint ANL/MCS-P792-0200, Mathematics and Computer Science Division,Argonne National Laboratory, 2000.14. J.-B. Hiriart-Urruty and C. Lemar�echal. Convex Analysis and Minimization AlgorithmsII. Comprehensive Studies in Mathematics. Springer-Verlag, 1993.15. 1997. http://www-personal.umich.edu/~jrbirge/dholmes/SPTSlists.html.16. K. C. Kiwiel. Proximity control in bundle methods for convex nondi�erentiable minimiza-tion. Mathematical Programming, 46:105{122, 1990.17. M. Livny, J. Basney, R. Raman, and T. Tannenbaum. Mechanismsfor high throughput computing. SPEEDUP, 11, 1997. Available fromhttp://www.cs.wisc.edu/condor/doc/htc mech.ps.18. O. L. Mangasarian. Nonlinear Programming. McGraw-Hill, New York, 1969.19. J. M. Mulvey and A. Ruszczy�nski. A new scenario decomposition method for large scalestochastic optimization. Operations Research, 43:477{490, 1995.20. R. T. Rockafellar. Convex Analysis. Princeton University Press, Princeton, 1970.21. A. Ruszczy�nski. A regularizeddecomposition for minimizinga sum of polyhedral functions.Mathematical Programming, 35:309{333, 1986.22. A. Ruszczy�nski. Parallel decomposition of multistage stochastic programming problems.Mathematical Programming, 58:201{228, 1993.23. S. Sen, R. D. Doverspike, and S. Cosares. Network planning with random demand.Telecommunications Systems, 3:11{30, 1994.24. Alexander Shapiro and Tito Homem-de-Mello. On the rate of convergence of optimalsolutions of Monte Carlo approximations of stochastic programs. SIAM Journal on Opti-mization, 11(1):70{86, 2001.25. R. Van Slyke and R.J-B. Wets. L-shaped linear programs with applications to control andstochastic programming. SIAM Journal on Applied Mathematics, 17:638{663, 1969.26. R. Wunderling. Paralleler und Objektorientierter Simplex-Algorithmus. PhD thesis,Konrad-Zuse-Zentrum f�ur Informationstechnik, Berlin, 1996.

